Programming Techniques for Supercomputers:

Introduction
Performance
Basics
Profiling
Measurement and Reporting

Benchmarks

Prof. Dr. G. Wellein(@)
Dr. G. Hager®
J. Hammer®), C.L. Alappat®

@HPC Services — Regionales Rechenzentrum Erlangen
®)Department fir Informatik

University Erlangen-Nirnberg, Sommersemester 2020

Performance: Why thoroughly measure and report it? rrE:

Determine which computer is best suited for a given (set of)
application(s)?

Gaming PC or Atom based Laptop?

Cluster or fat server? Fast CPU? Intel or AMD or GPU???

Which applications? Which input/data sets?

Validate impact of new optimization / implementation / parallelization
strategy and present to others
Results need to be interpreted and potentially reproduced by external people
Compare with other / previous work
Justify efficient usage of expensive resources

Determine “attainable” capabilities of individual parts of the computer

E.g., data transfer / IO / computational capabilities
Often required to guide optimization strategies - Performance Modeling

April 27, 2020 PTIS 2020 ' gfr';:ﬁ{rfgmance 5

Performance: What is a good measure/metric? rr?:

Performance = WORK / TIME

“Pure” metrics — basic choices for “WORK?”
MFlop/s: Millions of Floating Point Operations per Second

MFlop/s _Number of Floating Point Operations executed
106 * TIME

(often cited for technical & scientific applications)

MIPS: Millions of Instructions per Second

Number of Instructions executed
106 * TIME

MIPS =

(e.g. data bases, web servers ; computer architect view)

How to determine WORK, e.g. “Floating Point Operations”
Count them manually (high level code / algorithm)
Use CPUs event counter - cf. LIKWID

April 27, 2020 PTIS 2020 ' gfr';:ﬁ{rfgmance 3

B : ——

Performance — Pure WORK metric may fool... [T =»'—
“My vector update code runs at 2,000 MFlop/s on a 2GHz processor!
Great —isn’t it?

for (i=0; i<n; i++) Same execution
{

ali]= 3.0%cO+cl*c2 +c3*cd*a[i] -1.d0 *a[i]; UMe but...
}

2> #FLOP =8 * n

d0 = 3-0*CO+Cl*c2;
dl = CB*C4_1od0;
... but my for (i=0; i<n; i++)
MFlop/s rate e D 4 G -
IS only ¥a! }

2> #FLOP = 2*n +5

-> Define WORK carefully —independent of implementation issues

i = High Perf
April 27, 2020 PTfS 2020 L' oh Performance

Performance — choices for WORK [T ='—

lterations: Total number of loop iterations performed: WORK =n
iterations (see previous slide)
- Performance metric: Iterations /s

Lattice Site/ Cell / Particle Updates: Often used for stencil codes or
Lattice Boltzmann fluid solvers: WORK = number of sites/cells/particles to

be updated/computed
- Performance metric: Cell updates /s

Physical simulation time: Often used in molecular dynamics codes:
WORK = Physical time (e.g. nanosenconds) a system is propagated
- Performance metric: nanoseconds / day

Complete problem solution: WORK: "1” well defined problem
- Performance metric: 1 /s

April 27, 2020 PTIS 2020 ' gfr';:ﬁ{rfgmance .

Performance — TIME rrEE

Simplest performance metric (“Bestseller”): 1/ TIME
Measures time to solution
Carefully specify the “problem” you solved!
Best metric thinkable, but not intuitive in all situations (see later)

Problem: Which TIME?

LINUX / UNIX command time :
>time ./test.x
>34 .050u 0.612s 0:35.28 99.9%

>time ./testwIO.x
>33.802u 0.008s 0:43.04 78.8%

> XXXU YYYS mm:SS CPUratio%

xxx =2 USER CPU time [s] yyy =2 SYSTEM CPU time [s]

mm:ss = Elapsed time CPUratio =2 (xxx+yyy)/mm:ss
April 27, 2020 PTIS 2020 L' gf;p'jﬁ{;‘;rma“e 6

Performance — TIME rrT':

Stay away from CPU time - it‘s evil!

Elapsed time (WALLTIME) is the time you wait for your result!
(Always use dedicated resource, e.g. one node)

WALLTIME as difference of two timestamps on UNIX(-like) systems

#include <stdlib.h>
#include <time.h>

double getTimeStamp () {
struct timespec ts;
clock gettime (CLOCK MONOTONIC, &ts);
return (double)ts.tv _sec + (double)ts.tv nsec * l.e-9; }

Replaces gettimeofday ()
Code available in the exercise templates

Works fine for serial timings — due care for parallel apps is required

i == High Perf
April 27, 2020 PTfS 2020 I'IFIL Clgmpu?in(;rmance .

Where do | spend my time?

PROFILING

i == High Perf
April 27, 2020 PTfS 2020 I'IFIL Clgmpu?in(;rmance o

Performance: Where do | spend my time rrEE

How do | know where my code spends most of its time?

This is called “Profiling”

Application code is (automatically) instrumented such that runtime
contributions of all subroutines, function, etc can be determined

Many more advanced profiling tools exist, e.g. Intel Amplifier, Oprofile,
Codeanalyst — we start with simple one (gprof)

C++ code is notoriously hard to profile
Overloaded operators, tiny methods

Profiling may impact runtime (i.e. performance) - Qualitative insight

April 27, 2020 PTIS 2020 ' gfr';:ﬁ{rfgmance 9

Profiling with gprof [T ==

Basic profiling tool under Linux: gprof

Compiling for a profiling run (use compiler specific flag)

After running the binary, a file gmon . out Is written to current directory
Human readable output via

gprof a.out

Compiler inlining should be disabled for profiling
But then the executed code isn’t what it should be...

Profiling may (substantially) reduce overall code performance

High Performance

Computing 10

April 27, 2020 PTfS 2020 I-IFIE

Profiling with gprof: Example (sample - output)

tho82: stmp= gprof . /lbmKernel-pg
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
.05 17 17 10 0.32 0.32 relax_standard flipped 11 2g TeSt Of kernel
15 T .60 1 60 61 init flipped il 29 :)
.79 .82 .15 10 .01 .01 bounceback_index flipped i1 2q r()[]t|r]€3.
.51 .94 .02 2 .01 .01 make_bouncebacklist_
.25 L95 .01 1 .01 .01 obsin_

.25 96 .01 munmap °|n|t|al|ze
.00 .96 .00 2 .00 0.00 get_time_info_
.00 .96 .80 1 .00 3.95 MAIN

.00 .96 .00 1 .00 0.00 speed info_mlups_ *Run the 2
the percentage of the total running time of the (3()fT1[)LJtEiti()f1Ei|
program used by this function.]
kernels 10 times

e
e
o
o

0
0
0
0

Ll Gl L) L) G L) L L) G
DoOO00D0 000w

a running sum of the number of seconds accounted
seconds for by this function and those listed above 1t.

the number of seconds accounted for by this
function alone. This 1s the major sort for this
listing.

the number of times this function was invoked, if
this function is profiled, else blank.

the average number of milliseconds spent in this
function per call, if this function is profiled,
else blank.

the average number of milliseconds spent in this
function and its descendents per call, if this
function is profiled, else bhlank.

the name of the function. This is the minor sort
for this listing. The index shows the location of
the function in the gprof listing. If the index is
in parenthesis it shows where it would appear in
the gprof listing if it were to be printed.

April 27, 2020 PTIS 2020 FITR'L G oine e 12

Profiling with gprof: Example (sample - output)

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 0.25% of 3.96 seconds E3
utterfly graph

index % time self children called name)/ QJ F)

.00 3.95 171 main [2]

.00 .95 1 MAIN _ [1] Who calls whom

17 .00 10/10 relax_standard flipped il 2g_ [3]

60 0,01 1/1 init Flipped il 2g [4] and how often?

.15 .00 1o/10 bounceback _index flipped il 2g [5]

.01 .00 1/1 obsin_ [7]

01 .00 1/2 make bouncebacklist_ [6]

.00 .00 2/2 get _time_info_ [9]

speed_info_mlups_ [10]

[1] 99.7

DDoD 000 Wwo o
D000 000w

<spontaneous=
main [2]
MAIN__ [1]

MAIN [1]
relax_standard flipped il 2g_ [3]

MAIN_ [1]
init flipped il 2g_ [4]
make bouncebacklist [&]

MAIN__ [1]
bounceback_index flipped il 2g_ [5]

MAIN (1]
init_flipped il 2q [4]
make bouncebacklist [&]

MAIN__ [1]
obsin_ [7]

<spontaneouss>
munmap [8]

April 27, 2020 PTIS 2020 FITR' G oine e 12

Profiling with gprof: Example (C++) rrEE
Example with wrapped double class:

class D {
double d;
public:
D(double d=0) : d(d) {}

Main program:
D operator+ (const D& o) { prog

D r; const int n=10 000 000;
r.d = d+o.d; D a[n],b[n];
return r; D sum;

}

operator double() { for (int i=0; i<n; ++i)
return d; a[i] = b[i] = 1.5;

}

}; double s = timestamp() ;

for(int k=0; k<10; ++k) {
for(int i=0; i<n; ++1i)
sum = sum + a[i] + b[i];

April 27, 2020 PTfS 2020 L' gfr';:ﬁ{rfgmance 13

Profiling with gprof: Example (C++) profiler output rrEE

icpc -03 -pg perf.cc

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
101.01 0.41 0.41 main

icpc -03 -fno-inline -pg perf.cc

% cumulative self self total

time seconds seconds calls ns/call ns/call name

46.44 0.59 0.59 200000000 2.93 4.48 D::operator+(D consté&)
29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)

24 .82 1.27 0.31 main

But where did the time actually go?
Butterfly (callgraph) profile also available
Real problem also with use of libraries (STL!)
Sometimes you have to roll your own little profiler

April 27, 2020 PTfS 2020 L' gfr';:ﬁ{rfgmance 14

What does the hardware do?

PROBING HARDWARE
PERFORMANCE

April 27, 2020 PTfS 2020 L' gfr';:ﬁ{rfgmance 16

Probing Performance behavior =

Once a hotspot is identified = determine the hardware utilization

Performance counters allow to monitor processor events:
The number and kind of instructions executed
The data transfers executed for each cache/memory level
The clock speed at which the processor runs

The power/energy consumption (starting with Intel Sandy Bridge
architecture)

likwid-perfctr (from likwid toolbox) allows easy access to
performance events and provides useful derived metrics, e.g.
main memory bandwidth or Flop/s or cycles/instruction

http://code.google.com/p/likwid/
Separate lecture will cover that topic

High Performance

Computing 17

April 27, 2020 PTfS 2020 I-IFIE

Measuring performance in a reproducible way

BEST PRACTICES FOR

PERFORMANCE MEASUREMENT
& REPORTING

April 27, 2020 PTfS 2020 L' gfr';:ﬁ{rfgmance 20

Performance: Impact factors rr?:

“My code runs on an Intel Xeon Sandy Bridge
processor 12 times faster than the results
reported for code A in [xyz].”

April 27, 2020 PTfS 2020 L' gfr';:ﬁ{rfgmance 1

Performance: Impact factors rrE:

For a given code/problem performance may be influenced by many factors

CPU gnu, Intel, pgi, pathscale

Clock speed, SMT,
#cores, cache size -
Memory
Interface, Size, Speed _

SuSe,
RedHat,
Ubuntu,...

Atlas, mkl,

fftw, . ..
Performance

Vendor / Board

O subsystem

For reproducibility of performance results:
All critical factors need to be reported!
Sensibility and stability analysis!
Statistics - fluctuations between runs {&6\
o

L
High Perfor: \6\

Computing =

April 27, 2020 PTfS 2020 I-IFIE

Performance Measurement: Best Practices rrT—

Preparation

Consider to automate runs with a script (Shell, python, perl)

Reliable timing/timer granularity (Minimum time which can be measured?)
Document code generation (Flags, Compiler Version)

Document system state (Clock, Turbo mode, Memory, Caches,...)

Doing

Get exclusive system
Fix clock speed

Control Affinity / Topology— where does my code/threads/processes run
exactly?

Working set size — code input parameters?!

Is result deterministic and reproducible - Statistics: Mean, Median, Best ??
Basic variations: Thread count, affinity, working set size <-> runtime

Check: Are the results reasonable? O((OQ

I'IFIE High Perforp: \®Q 23

Computing

Memory | [Memory

Performance Measurement: Best Practices (cont.) rrE:

Postprocessing

Documentation

Plan variations to gain more information

Many things can be better understood if you plot them (gnuplot, xmgrace)
Use statistics to report performance fluctuations

Try to understand and explain the result

Is there a (simple) model which can (qualitatively) explain the performance
levels and variations?

2000{- pmmmmm e
I // ® * d ¢ i ¢
S T T
do k =1, Nk; do j = 1, Nj 1500 A A
L]
do i = 1, Ni B YA
.. & / a
y(i,j,k) = const* & | }" /
. - . . 1000 |~ /
$ (X (1_1 I4 J 4 k) + X (l+1 4 J 4 k) E : /// 1//- ® @ Measurement@3.0GHz :
$ + x (i , j _1 , k) + x (i , j'l'l , k) I l/ e —— ECM Model: 3.0GHz; MemBW=48GB/s | |
| / ‘ B W Measurement@1.6GHz i
$ + x (i , j , k_l) + x (i , j , k+1)) 500] /// —— ECM Model: 1.6GHz; MemBW=42GB/s
- / 4
enddo - ® Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz
enddo; enddo i Memory Bandwidth 48 GR*
0 | ! ! | ! | ! | !

1 2 3 4 5 6 7 8 9 (’\\
cores (b
0{\

HI='C Compung S 24

Benchmarks provide insights beyond the hardware fact sheet

BENCHMARKS

| = High Perf
April 27, 2020 PTfS 2020 L' igh Performance 55

Benchmarks: Classification FFL:
Real (full) applications: Solves real world problem but includes everything and
may run for hours or days on thousands of processors!

Proxy Applications or miniapps: Small and simplified code which allows to
capture relevant performance features of real (full) scale applications, e.g.
Mantevo miniapps [1], Exascale proxy applications [2] or SPEC [3]

Kernels: “Small” code pieces representing single steps of (proxy) applications
e.g. solver (= LINPACK,...) or time consuming computational step (= stream,
(sparse) matrix vector multiplication,...). Easy to port, analyze and optimize.

_ Vendors report for several standard kernels (e.g. stream, LINPACK) y

Toy benchmarks: Small pieces of code implementing popular algorithms (e.g.
quicksort). Typical used for getting students started with programming.

Synthetic benchmarks: Simulate operations and data accesses of a variety of
applications without having any relation to the application codes
Kernels are central for structured performance modelling!

[1] https://mantevo.qgithub.io ; [2] https://proxyapps.exascaleproject.org ; [3] www.Spec.org

April 27, 2020 PTfS 2020 L' gfr';:ﬁ{rfgmance 26

https://mantevo.github.io/
https://proxyapps.exascaleproject.org/
http://www.spec.org/

Benchmarks — HPC standard kernel benchmarks ||l =

STREAM

LINPACK

HPCCG

SPEC

April 27, 2020

h—

-> Attainable main memory bandwidth
- Top500 Ranking / Attainable peak performance
- CG solver

—> Industry standard — not HPC specific

o High Performance
PTfS 2020 I'IFIL Computing 21

Benchmarks: STREAM — Capability of data paths

http://www.cs.virginia.edu/stream/

Performs 4 “streaming” tests:
COPY: A(1:N) = B(1:N)
Scale: A(1:N) =s*B(1:N)
Add: A(1:N) = B(1:N)+C(1:N)
Triad: A(1:N) = B(1:N)+s*C(1:N)

Results are reported in MB/s

No changes are allowed

Tests attainable
main memory bandwidth

Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word

STREAM Vers

Array size

Offset

The total memory requirement is

You are running each test 10 times

The *hest* time for each test is used
FEXCLUDING* the first and last iterations

1 microseconds

Min time Max
0.0499

Function
Copy:
Scale:

0. 0499
0.0518

Q.0710

thoo7: /mp= |

Stream & stream-like tests are used throughout the lecture

April 27, 2020

PTfS 2020

o High Performance
I'IFIL Computing 28

http://www.cs.virginia.edu/stream/

Benchmarks — LINPACK: Towards Peak Performance rr?_

Solve large dense linear system of equation, i.e.

Ax=0D>b

with A is a dense (N x N) matrix

Algorithm: LU factorization of A
(+ forward/backward substitution) with

computational complexity% N3+ O(N?)

Highly parallel implementations are available

Achieves high fraction of machine peak performance (see 15t lecture)

(see http://www.netlib.org/benchmark/hpl/algorithm.html)

April 27, 2020 PTfS 2020 L' gfr';:ﬁ{rfgmance 29

Benchmarks: HPCG — Something more realistic? rr?:

HPCG: High Performance Conjugate Gradient benchmark

Basic algorithm: Conjugate Gradient with a local symmetric Gauss-
Seidel preconditioner

Synthetic 3D sparse linear system (stencil-structure)

HPCG GF vs STREAM BW

Strong correlation with
main memory bandwidth and
stream benchmark 180 |

= K40+ ECC
@ K40 ECC

HPCG GFLOPS

o0 | 3 K20K ECC

AKLD
WK10ECC
*GK20A

0.0 ES-2697 v2
0 50 100 150 200 250

STREAM BANDWIDTH

https://www.top500.org/hpcaq/

Figure from: https://devblogs.nvidia.com/parallelforall/optimizing-high-performance-conjugate-
gradient-benchmark-gpus/

High Performance

Computing 30

April 27, 2020 PTfS 2020 I-IFIE

https://www.top500.org/hpcg/

Benchmarks: Modified/restricted applications (SPEC)

[T

ﬁ—
==

Most widely accepted benchmark suites: SPEC (Standard Performance

Evaluation Corporation) www.spec.org
Long history: Since 1980’s

Several categories of SPEC benchmarks:

CPU
Graphics/Workstations
MPI / OpenMP

Java Client/Server
Mail Server

Every category has a set of proxy apps

!

=

-

spec

Benchmarks are reported in wallclocktime and compared with a

reference system

Reference: Sun UltraSparc VI+@2100MHz (2006; 2.1 GHz; 2 cores):

0.3 Billion transistors (cf. Intel Platinum 8280: 8 Billion with 2.7 GHZ

and 28 cores)

April 27, 2020 PTfS 2020

o High Performance
I'IFIL Computing 31

http://www.spec.org/

Some DON’Ts for presenting performance
results

“Fooling the masses with performance results: Old
classics and some new ideas”

45 — 60 minute presentation by G. Wellein & G. Hager motivated

by
D. Bailey, “Twelve Ways to Fool the Masses When Giving
Performance Results on Parallel Computers®(1991)

See also:
http://blogs.fau.de/hager/archives/category/fooling-the-masses

April 27, 2020 PTfS 2020

