
Programming Techniques for Supercomputers:
Introduction

Performance

Basics

Profiling

Measurement and Reporting

Benchmarks

Prof. Dr. G. Wellein(a,b)

Dr. G. Hager(a)

J. Hammer(b), C.L. Alappat(b)

(a)HPC Services – Regionales Rechenzentrum Erlangen
(b)Department für Informatik

University Erlangen-Nürnberg, Sommersemester 2020

2

Performance: Why thoroughly measure and report it?

▪ Determine which computer is best suited for a given (set of)

application(s)?

▪ Gaming PC or Atom based Laptop?

▪ Cluster or fat server? Fast CPU? Intel or AMD or GPU???

▪ Which applications? Which input/data sets?

▪ Validate impact of new optimization / implementation / parallelization

strategy and present to others

▪ Results need to be interpreted and potentially reproduced by external people

▪ Compare with other / previous work

▪ Justify efficient usage of expensive resources

▪ Determine “attainable” capabilities of individual parts of the computer

▪ E.g., data transfer / IO / computational capabilities

▪ Often required to guide optimization strategies → Performance Modeling

April 27, 2020 PTfS 2020

3April 27, 2020 PTfS 2020

▪ Performance = WORK / TIME

▪ “Pure” metrics – basic choices for “WORK”

▪ MFlop/s: Millions of Floating Point Operations per Second

(often cited for technical & scientific applications)

▪ MIPS: Millions of Instructions per Second

(e.g. data bases, web servers ; computer architect view)

▪ How to determine WORK, e.g. “Floating Point Operations”

▪ Count them manually (high level code / algorithm)

▪ Use CPUs event counter → cf. LIKWID

Number of Floating Point Operations executed

106 * TIME
MFlop/s =

Number of Instructions executed

106 * TIME
MIPS =

Performance: What is a good measure/metric?

4April 27, 2020 PTfS 2020

Performance – Pure WORK metric may fool…

▪ “My vector update code runs at 2,000 MFlop/s on a 2GHz processor!

▪ Great – isn’t it?

→ Define WORK carefully – independent of implementation issues

for(i=0; i<n; i++)

{

a[i]= 3.0*c0+c1*c2 +c3*c4*a[i] -1.d0 *a[i];

}

→ #FLOP = 8 * n

d0 = 3.0*c0+c1*c2;

d1 = c3*c4-1.d0;

for(i=0; i<n; i++)

{

a[i]= d0 + d1*a[i];

}

→ #FLOP = 2* n + 5

Same execution

time but…

… but my

MFlop/s rate

is only ¼!

5

Performance – choices for WORK

▪ Iterations: Total number of loop iterations performed: WORK = n

iterations (see previous slide)

→ Performance metric: Iterations / s

▪ Lattice Site/ Cell / Particle Updates: Often used for stencil codes or

Lattice Boltzmann fluid solvers: WORK = number of sites/cells/particles to

be updated/computed

→ Performance metric: Cell updates / s

▪ Physical simulation time: Often used in molecular dynamics codes:

WORK = Physical time (e.g. nanosenconds) a system is propagated

→ Performance metric: nanoseconds / day

▪ Complete problem solution: WORK: ”1” well defined problem

→ Performance metric: 1 / s

April 27, 2020 PTfS 2020

6April 27, 2020 PTfS 2020 6

Performance – TIME

▪ Simplest performance metric (“Bestseller”): 1 / TIME

▪ Measures time to solution

▪ Carefully specify the “problem” you solved!

▪ Best metric thinkable, but not intuitive in all situations (see later)

▪ Problem: Which TIME?

▪ LINUX / UNIX command time :

>time ./test.x

>34.650u 0.612s 0:35.28 99.9%

>time ./testwIO.x

>33.802u 0.608s 0:43.64 78.8%

▪ > xxxu yyys mm:ss CPUratio%

xxx → USER CPU time [s] yyy → SYSTEM CPU time [s]

mm:ss → Elapsed time CPUratio → (xxx+yyy)/mm:ss

7April 27, 2020 PTfS 2020

Performance – TIME

▪ Stay away from CPU time – it‘s evil!

▪ Elapsed time (WALLTIME) is the time you wait for your result!

(Always use dedicated resource, e.g. one node)

▪ WALLTIME as difference of two timestamps on UNIX(-like) systems

▪ Replaces gettimeofday()

▪ Code available in the exercise templates

▪ Works fine for serial timings – due care for parallel apps is required

#include <stdlib.h>

#include <time.h>

double getTimeStamp() {

struct timespec ts;

clock_gettime(CLOCK_MONOTONIC, &ts);

return (double)ts.tv_sec + (double)ts.tv_nsec * 1.e-9; }

8

PROFILING

Where do I spend my time?

April 27, 2020 PTfS 2020

9April 27, 2020 PTfS 2020

Performance: Where do I spend my time

▪ How do I know where my code spends most of its time?

▪ This is called “Profiling”

▪ Application code is (automatically) instrumented such that runtime

contributions of all subroutines, function, etc can be determined

▪ Many more advanced profiling tools exist, e.g. Intel Amplifier, Oprofile,

Codeanalyst – we start with simple one (gprof)

▪ C++ code is notoriously hard to profile

▪ Overloaded operators, tiny methods

▪ Profiling may impact runtime (i.e. performance) → Qualitative insight

10

Profiling with gprof

▪ Basic profiling tool under Linux: gprof

▪ Compiling for a profiling run (use compiler specific flag)

icc -pg …… -o a.out

./a.out

▪ After running the binary, a file gmon.out is written to current directory

▪ Human readable output via

gprof a.out

▪ Compiler inlining should be disabled for profiling

▪ But then the executed code isn’t what it should be…

▪ Profiling may (substantially) reduce overall code performance

April 27, 2020 PTfS 2020

11April 27, 2020 PTfS 2020

Profiling with gprof: Example (sample - output)

Test of kernel

routine:

•Initialize

•Run the 2

computational

kernels 10 times

12April 27, 2020 PTfS 2020

Profiling with gprof: Example (sample - output)

Butterfly graph

Who calls whom

and how often?

13April 27, 2020 PTfS 2020

Profiling with gprof: Example (C++)

▪ Example with wrapped double class:

class D {

double d;

public:

D(double _d=0) : d(_d) {}

D operator+(const D& o) {

D r;

r.d = d+o.d;

return r;

}

operator double() {

return d;

}

};

const int n=10 000 000;

D a[n],b[n];

D sum;

for(int i=0; i<n; ++i)

a[i] = b[i] = 1.5;

double s = timestamp();

for(int k=0; k<10; ++k) {

for(int i=0; i<n; ++i)

sum = sum + a[i] + b[i];

}

Main program:

14

Profiling with gprof: Example (C++) profiler output

▪ icpc -O3 -pg perf.cc

▪ icpc -O3 -fno-inline -pg perf.cc

▪ But where did the time actually go?

▪ Butterfly (callgraph) profile also available

▪ Real problem also with use of libraries (STL!)

▪ Sometimes you have to roll your own little profiler

% cumulative self self total

time seconds seconds calls Ts/call Ts/call name

101.01 0.41 0.41 main

% cumulative self self total

time seconds seconds calls ns/call ns/call name

46.44 0.59 0.59 200000000 2.93 4.48 D::operator+(D const&)

29.63 0.96 0.37 240000001 1.56 1.56 D::D(double)

24.82 1.27 0.31 main

April 27, 2020 PTfS 2020

16

PROBING HARDWARE

PERFORMANCE

What does the hardware do?

April 27, 2020 PTfS 2020

17

Probing Performance behavior

▪ Once a hotspot is identified → determine the hardware utilization

▪ Performance counters allow to monitor processor events:

▪ The number and kind of instructions executed

▪ The data transfers executed for each cache/memory level

▪ The clock speed at which the processor runs

▪ The power/energy consumption (starting with Intel Sandy Bridge

architecture)

▪ …

▪ likwid-perfctr (from likwid toolbox) allows easy access to

performance events and provides useful derived metrics, e.g.

main memory bandwidth or Flop/s or cycles/instruction

http://code.google.com/p/likwid/

▪ Separate lecture will cover that topic

April 27, 2020 PTfS 2020

20

BEST PRACTICES FOR

PERFORMANCE MEASUREMENT

& REPORTING

Measuring performance in a reproducible way

April 27, 2020 PTfS 2020

21

Performance: Impact factors

“My code runs on an Intel Xeon Sandy Bridge

processor 12 times faster than the results

reported for code A in [xyz].”

April 27, 2020 PTfS 2020

22April 27, 2020 PTfS 2020

Performance: Impact factors

▪ For a given code/problem performance may be influenced by many factors

▪ For reproducibility of performance results:

▪ All critical factors need to be reported!

▪ Sensibility and stability analysis!

▪ Statistics - fluctuations between runs

Performance

CPU
Clock speed, SMT,

#cores, cache size

Memory
Interface, Size, Speed

Vendor / Board

IO subsystem

Compiler
Version, Flags

OS
Parameters,

Version, Libraries

BIOS
Settings

Libraries

gnu, Intel, pgi, pathscale

Atlas, mkl,

fftw,…

SuSe,

RedHat,

Ubuntu,…

23

Preparation

▪ Consider to automate runs with a script (Shell, python, perl)

▪ Reliable timing/timer granularity (Minimum time which can be measured?)

▪ Document code generation (Flags, Compiler Version)

▪ Document system state (Clock, Turbo mode, Memory, Caches,…)

Doing

▪ Get exclusive system

▪ Fix clock speed

▪ Control Affinity / Topology– where does my code/threads/processes run

exactly?

▪ Working set size – code input parameters?!

▪ Is result deterministic and reproducible →Statistics: Mean, Median, Best ??

▪ Basic variations: Thread count, affinity, working set size → runtime

▪ Check: Are the results reasonable?

Performance Measurement: Best Practices

PTfS 2020

24

Postprocessing

▪ Documentation

▪ Plan variations to gain more information

▪ Many things can be better understood if you plot them (gnuplot, xmgrace)

▪ Use statistics to report performance fluctuations

▪ Try to understand and explain the result

▪ Is there a (simple) model which can (qualitatively) explain the performance

levels and variations?

Performance Measurement: Best Practices (cont.)

Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00GHz

Memory Bandwidth 48 GB/s

do k = 1 , Nk; do j = 1, Nj

do i = 1, Ni

y(i,j,k) = const*

$ (x(i-1,j,k) + x(i+1,j,k)

$ + x(i,j-1,k) + x(i,j+1,k)

$ + x(i,j,k-1) + x(i,j,k+1))

enddo

enddo; enddo

PTfS 2020

25

BENCHMARKS

Benchmarks provide insights beyond the hardware fact sheet

April 27, 2020 PTfS 2020

26April 27, 2020 PTfS 2020

Benchmarks: Classification

1. Real (full) applications: Solves real world problem but includes everything and
may run for hours or days on thousands of processors!

2. Proxy Applications or miniapps: Small and simplified code which allows to
capture relevant performance features of real (full) scale applications, e.g.
Mantevo miniapps [1], Exascale proxy applications [2] or SPEC [3]

3. Kernels: “Small” code pieces representing single steps of (proxy) applications
e.g. solver (→ LINPACK,…) or time consuming computational step (→ stream,
(sparse) matrix vector multiplication,…). Easy to port, analyze and optimize.
Vendors report for several standard kernels (e.g. stream, LINPACK)

4. Toy benchmarks: Small pieces of code implementing popular algorithms (e.g.
quicksort). Typical used for getting students started with programming.

5. Synthetic benchmarks: Simulate operations and data accesses of a variety of
applications without having any relation to the application codes

Kernels are central for structured performance modelling!

[1] https://mantevo.github.io ; [2] https://proxyapps.exascaleproject.org ; [3] www.spec.org

https://mantevo.github.io/
https://proxyapps.exascaleproject.org/
http://www.spec.org/

27

Benchmarks – HPC standard kernel benchmarks

▪ STREAM → Attainable main memory bandwidth

▪ LINPACK → Top500 Ranking / Attainable peak performance

▪ HPCCG → CG solver

▪ SPEC → Industry standard – not HPC specific

April 27, 2020 PTfS 2020

28April 27, 2020 PTfS 2020

Benchmarks: STREAM – Capability of data paths

▪ http://www.cs.virginia.edu/stream/

▪ Performs 4 “streaming” tests:

▪ COPY: A(1:N) = B(1:N)

▪ Scale: A(1:N) = s*B(1:N)

▪ Add: A(1:N) = B(1:N)+C(1:N)

▪ Triad: A(1:N) = B(1:N)+s*C(1:N)

▪ Results are reported in MB/s

▪ No changes are allowed

▪ Tests attainable

main memory bandwidth

▪ Stream & stream-like tests are used throughout the lecture

http://www.cs.virginia.edu/stream/

29

Benchmarks – LINPACK: Towards Peak Performance

▪ Solve large dense linear system of equation, i.e.

𝐴 𝑥 = 𝑏
with 𝐴 is a dense 𝑁 × 𝑁 matrix

▪ Algorithm: LU factorization of 𝐴
(+ forward/backward substitution) with

computational complexity
2

3
𝑁3 + 𝛰(𝑁2)

▪ Highly parallel implementations are available

▪ Achieves high fraction of machine peak performance (see 1st lecture)

(see http://www.netlib.org/benchmark/hpl/algorithm.html)

April 27, 2020 PTfS 2020

30

Benchmarks: HPCG – Something more realistic?

▪ HPCG: High Performance Conjugate Gradient benchmark

▪ Basic algorithm: Conjugate Gradient with a local symmetric Gauss-

Seidel preconditioner

▪ Synthetic 3D sparse linear system (stencil-structure)

▪ Strong correlation with

main memory bandwidth and

stream benchmark

▪ https://www.top500.org/hpcg/

April 27, 2020 PTfS 2020

Figure from: https://devblogs.nvidia.com/parallelforall/optimizing-high-performance-conjugate-

gradient-benchmark-gpus/

https://www.top500.org/hpcg/

31April 27, 2020 PTfS 2020

Benchmarks: Modified/restricted applications (SPEC)

▪ Most widely accepted benchmark suites: SPEC (Standard Performance

Evaluation Corporation) www.spec.org

▪ Long history: Since 1980’s

▪ Several categories of SPEC benchmarks:

▪ CPU

▪ Graphics/Workstations

▪ MPI / OpenMP

▪ Java Client/Server

▪ Mail Server

▪ …

▪ Every category has a set of proxy apps

▪ Benchmarks are reported in wallclocktime and compared with a

reference system

▪ Reference: Sun UltraSparc VI+@2100MHz (2006; 2.1 GHz; 2 cores):

0.3 Billion transistors (cf. Intel Platinum 8280: 8 Billion with 2.7 GHZ

and 28 cores)

http://www.spec.org/

Some DON’Ts for presenting performance

results

“Fooling the masses with performance results: Old

classics and some new ideas”

45 – 60 minute presentation by G. Wellein & G. Hager motivated

by

D. Bailey, “Twelve Ways to Fool the Masses When Giving

Performance Results on Parallel Computers”(1991)

See also:

http://blogs.fau.de/hager/archives/category/fooling-the-masses

April 27, 2020 PTfS 2020

